

Ministério da Educação Universidade Federal da Fronteira Sul Roteiro para Plano de Ensino

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Ciências da Computação

Disciplina: Geometria Analítica

Período: 1 Semestre: 2010-01

Carga horária: 72h

Professor: Fernando de Lacerda Mortari

2. EMENTA

Matrizes. Determinantes. Sistemas lineares. Álgebra vetorial. Estudo da reta e do plano. Curvas planas. Superfícies.

3. JUSTIFICATIVA

A capacidade de raciocinar de forma organizada, lógica e criativa, relacionando conceitos abstratos e aplicando-os a problemas concretos são habilidades imprescindíveis para um profissional na área de computação. A disciplina de Geometria Analítica dá ao aluno condições de trabalhar estas habilidades, através do desenvolvimento da abstração matemática e do raciocínio espacial, e apresentando conceitos que serão posteriormente utilizados nas demais disciplinas de Matemática do curso, em que tais habilidades continuarão a ser trabalhadas. O conteúdo em si constitui também ferramenta de importância fundamental ao profissional do ramo.

4. OBJETIVOS:

4.1. GERAL:

Propiciar ao aluno condições de:

- Desenvolver sua capacidade de dedução;
- Desenvolver sua capacidade de raciocínio lógico e organizado;
 - Desenvolver sua capacidade de formulação e interpretação de situações matemáticas;
 - Desenvolver seu espírito crítico e criativo;
 - Organizar, comparar e aplicar os conhecimentos adquiridos.

4.2. ESPECÍFICO:

Propiciar ao aluno condições de:

- Identificar tipos de matrizes;
- Operar com matrizes;

Ministério da Educação Universidade Federal da Fronteira Sul Roteiro para Plano de Ensino

- Calcular determinantes;
- Construir e resolver sistemas de equações lineares por escalonamento e por inversão de matriz;
- Operar com vetores;
- Reconhecer e calcular produtos escalar, vetorial e misto de vetores, além de interpretá-los geometricamente;
- Usar vetores como um instrumento para resolver problemas envolvendo relações entre pontos, retas e planos;
- Identificar geometricamende equações lineares e quadráticas em até 3 variáveis.

5. CONTEÚDO PROGRAMÁTICO

O conteúdo da disciplina será ministrado de acordo com o cronograma abaixo:

ENCONTRO	CONTEÚDO
09/04	Matrizes
12/04	Matrizes, Sistemas Lineares
16/04	Sistemas Lineares
23/04	Matrizes Inversas
30/04	Determinantes
07/05	Revisão, Avaliação 1
14/05	Álgebra vetorial, Operações com vetores
21/05	Combinação e dependência linear, norma de
	vetores, ângulo entre vetores
28/05	Projeção ortogonal, produtos vetorial e misto
04/06	Estudo da Reta e do Plano - Equações da reta e do
	plano
11/06	Equações do plano
18/06	Revisão, Avaliação 2
25/06	Ângulos e distâncias
02/07	Posições relativas entre retas e planos
09/07	Curvas Planas – Cônicas e sua caracterização
16/07	Coordenadas polares
23/07	Quádricas

Ministério da Educação Universidade Federal da Fronteira Sul Roteiro para Plano de Ensino Revisão, **Avaliação 3**

6. ESTRATÉGIAS DE ENSINO

Serão ministradas aulas expositivo-dialogadas, com a resolução de exercícios em sala de aula e incentivo a participação dos alunos.

7. AVALIAÇÃO

30/07

O sistema de avaliação seguirá as normas gerais estabelecidas pela UFFS. Serão realizadas três avaliações escritas ao longo do semestre. A média final será calculada através da média aritmética das notas obtidas nas três avaliações. Estará aprovado o aluno que obtiver média final maior ou igual a 6,0 (seis) e freqüência igual ou superior a 75%.

8. REFERÊNCIAS

8.1 BÁSICAS:

BOULOS, P.; CAMARGO, I.. Geometria Analítica: um tratamento vetorial. 3a ed., São Paulo, Pearson Education, 2005.

SANTOS, R.. Matrizes, Vetores e Geometria Analítica. Belo Horizonte, Imprensa Universitária da UFMG, 2010.

STEINBRUCH, Alfredo. Geometria Analítica. 2a ed., São Paulo, SP, McGraw-Hill, 1987.

WINTERLE, P., Vetores e Geometria Analítica. São Paulo, Makron Books, 2006.

8.2.COMPLEMENTARES:

CORREA, Paulo S. Q.. Álgebra Linear e Geometria Analítica. Interciência, 2006.

JULIANELLI, José Roberto. Cálculo Vetorial e Geometria Analítica. Ciência Moderna, 2008.

LEHMANN, Charles H., Geometria Analítica, Editora Globo, 1998.

LORETO, Ana Célia da Costa; LORETO JR, Armando Pereira. Vetores e Geometria Analítica: teoria e exercícios. Editora LCTE, 2005.

REIS, Genésio L.; SILVA, Valdir V., Geometria Analítica, LTC, 1996.