PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Curso de Engenharia Ambiental e Energias Renováveis

Componente Curricular: TOPOGRAFIA

Fase: 6^a fase

Ano/Semestre: 2012.2 Numero de Créditos: 4

Carga horária - Hora Aula: 72 Carga horária - Hora Relógio: 60 Professor: James Luiz Berto

2.OBJETIVO GERAL DO CURSO

O Curso de Engenharia Ambiental e Energias Renováveis tem por objetivo graduar Engenheiros com uma formação interdisciplinar vocacionada para o desenvolvimento e aplicação de tecnologias de controle de poluição sustentável, saneamento básico e produção e geração descentralizada de energia.

3. EMENTA

Conceitos fundamentais. Escalas. Medições de ângulos e distâncias. Instrumentos topográficos. Planimetria: poligonais e detalhes. Taqueometria. Desenho topográfico e representação do relevo. Nivelamento. Cálculo de áreas e volumes. Movimentação de terra. Locação de projetos. Projeções UTM. GPS posição geodésica por satélite. Noções de aerofotogrametria e sensoriamento remoto.

4. JUSTIFICATIVA

A topografia por tratar da tomadas de medidas, determinação da área, da forma e do relevo e sua representações torna-se de fundamental importância para o Engenheiro Ambiental.

5. OBJETIVOS

Capacitar o aluno no uso de técnicas de levantamento topográfico e suas representações; interpretação de plantas topográficas; projeto e cálculo de movimentação de terra.

5.1. ESPECÍFICOS:

- Compreender as relações e a importância da topografía na agronomia;
- Realizar estudos, projetos e levantamentos topográficos;
- Interpretar levantamentos e plantas topográficos.

6. CRONOGRAMA E CONTEÚDO PROGRAMÁTICO

Data Encontro	Conteúdo
4 horas aula	Plano de ensino. Introdução a Topografia: conceitos, relação com as demais
	áreas da agronomia, divisão da topografia, etapas do trabalho em topografia,
	unidades de medidas e escalas. Precisão e acurácia.
4 horas aula	Estudo do erro (grosseiro, acidental, sistemático). Medida direta de distância:
	Instrumentos, principais cuidados, dupla trenada e erro. Práticas com trenas e
	balizas. Medida indireta de distância: Taqueometria: taqueômetros e
	distanciômetros. Ângulos horizontais (geométricos e geográficos) e verticais
	(zenital, nadiral e inclinação horizontal).
4 horas aula	Goniômetros: Principais características (eixos, limbos, luneta), cuidados,
	medição de ângulos e erro na medida de ângulos. Prática de campo.
2 horas aula	Levantamentos topográficos planimétricos: principais métodos de
	levantamento planimétrico, características, vantagens e desvantagens.
8 horas aula	Levantamento planimétrico por caminhamento perimétrico, irradiação e
	intersecção:trabalho de campo; cálculo da área; desenho da planta; erros.
	Práticas de campo.
4 horas aula	Formas de representação do relevo (curvas de nível, perfil, hachuras, pontos
	cotados e cores ipsométricas). Declividade.
4 horas aula	Levantamento topográfico altimétrico: aparelhos utilizados nos
	levantamentos altimétricos (estação total, nível ótico e nível eletrônico)
8 horas aula	Levantamentos altimétricos: geométrico e trigonométrico; levantamento de
	campo, cálculos, representação do relevo. Prática de campo.
	Cálculo de áreas, volumes e movimento de terras.
4 horas aula	Locação de obras
4 horas aula	Normas para levantamento e desenho topográficos.
6 horas aula	Projeções UTM. GPS posição geodésica por satélite.
	Noções de aerofotogrametria e sensoriamento remoto.
4 horas aula	O uso da computação na topografia.
6 horas aula	Avaliações

7. PROCEDIMENTOS METODOLÓGICOS (estratégias de ensino, equipamentos, entre outros)

A disciplina será trabalhada com aulas expositivas e práticas de campo. Também serão realizados estudos dirigidos em grupos.

8. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação consistirá de no mínimo 2 provas escritas (com possibilidade de recuperação da nota das mesmas) e de acordo com o desenvolvimento da disciplina poderão ser realizados trabalhos em grupo para comporem as notas conjuntamente com as com as provas escritas.

9. REFERÊNCIAS 9.1. BÁSICAS:

CASACA, J. M.; MATOS, J. L.; DIAS, J. M. B. Topografia geral. LTC, 2007.

ERBA, D. A. **Topografia para estudantes de Arquitetura, Engenharia e Geologia**. São Leopoldo: Unisinos, 2007.

LOCH, C. A interpretação de imagens aéreas: noções básicas e algumas aplicações nos campos profissionais. Florianópolis: UFSC, 1993.

MCCORMIC, J. C. Topografia. LTC, 2007.

9.2. ESPECÍFICAS:

BORGES, Alberto C. **Topografia**. São Paulo: Edgard Blücher Ltda, 1997. v. 1 e 2. COMASTRI, José Anibal. **Topografia. Planimetria**. 2. ed. Universidade Federal de Viçosa, Imprensa Universitária UFV, 1999.