

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus Chapecó PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental

Componente curricular: GEN111 - Energia Solar e Eólica

Fase: 8ª

Ano/semestre: 2016/2 Número da turma: 15257 Número de créditos: 4

Carga horária – Hora aula: 72 Carga horária – Hora relógio: 60 h Professores: Rodrigo Dal Bosco Fontana

Atendimento ao Aluno: A qualquer horário, desde que marcado com antecedência de 48h através

do e-mail rodrigo.fontana@uffs.edu.br.

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Energia renovável no mundo: solar e eólica. Princípios da radiação solar. Energia solar fototérmica: sistemas existentes e suas aplicações. Energia solar fotovoltaica: o efeito fotoelétrico, a célula fotovoltaica, seus tipos e potência e energia geradas. Materiais e características elétricas dos painéis fotovoltaicos. Noções de projetos e instalações de sistemas fotovoltaicos. Definição de energia eólica. Componentes do sistema eólico. Tipos de sistemas eólicos. Características dos ventos. Aerogeradores: tipos de aerogeradores, potência elétrica gerada e ponto de máxima potência. Parques eólicos no Brasil.

4. OBJETIVOS

4.1. GERAL

Fornecer aos estudantes uma visão geral das energias renováveis existentes no mercado de natureza eólica e solar.

4.2. ESPECÍFICOS

Ao final da disciplina, o aluno deverá

1. Ter uma visão abrangente dos conceitos de energia eólica do ponto de vista teórico e prático, abrangendo os componentes de um sistema eólico, bem como uma visão específica a

RMF

respeito de aerogeradores e parques eólicos.

2. Ter uma visão abrangente do aproveitamento de energia solar do ponto de vista das energias renováveis: painéis fotovoltaicos e energia fototérmica, bem como de instalação de sistemas fotovoltaicos.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

ENCONTRO	CONTEÚDO
Aula 1	Apresentação e introdução à disciplina.
Aula 2	Estudo dos ventos: climatologia e física
Aula 3	Introdução à energia eólica. Modelagem de ventos
Aula 4	Turbinas eólicas: introdução. Extração de potência. Limitante de Betz. Exercícios
Aula 5	Turbinas eólicas: coeficiente de potência da turbina. Momento angular e o máximo de Betz. Pás das turbinas eólicas. Controle de velocidade e de potência. Exercícios.
Aula 6	Componentes de um sistema eólico: aerogeradores. Parques eólicos no Brasil e dimensionamento.
Aula 7	Visita a um parque eólico.
Aula 8	Visita a um parque eólico.
Aula 9	Avaliação.
Aula 10	Introdução à energia solar: radiação solar e geração de energia solar. Irradiação sobre a Terra. Aproveitamento.
Aula 11	Energia solar fototérmica: teoria e sistemas de aproveitamento.
Aula 12	Energia fotovoltaica: definição. Efeito fotovoltaico. Célula Fotovoltaica.
Aula 13	Célula Fotovoltaica (continução).
Aula 14	Célula Fotovoltaica. Painéis Fotovoltaicos.
Aula 15	Sistemas Fotovoltaicos. Exercícios.
Aula 16	Seminários.
Aula 17	Avaliação.
Aula 18	Recuperação.

6. PROCEDIMENTOS METODOLÓGICOS

O procedimento metodológico adotado é o de aulas expositivas com uso de recursos computacionais. Para melhor fixação do conteúdo, o aluno será incentivado a resolver problemas envolvendo conceitos teóricos e práticos dos conteúdos. Vídeos explicativos e simulações computacionais ilustrativas também serão usadas como recursos pedagógicos. O aluno terá à disposição assistência individual do professor para resolver questões relacionadas a disciplina.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação será por meio de aplicação de uma prova escrita, trabalhos em sala de aula e seminário. A média final (MF) será dada pela composição das notas da prova escrita e do seminário (35% cada), bem como dos exercícios resolvidos em sala ou em casa (30%).

Considerar-se-á aprovado o aluno que obtiver no mínimo média final, MF, igual a 6 (seis) e uma frequência mínima de 75% das aulas ministradas.

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Para os estudantes que ficaram com MF inferior a 6,0, haverá a possibilidade de uma avaliação final (recuperação), englobando a totalidade de conteúdos do semestre. A MF neste caso será a nota desta avaliação mais a nota final obtida pelo aluno ao longo do semestre dividida por dois (se maior do

RM

que a MF anterior a esta). Estará aprovado por nota o aluno que obtiver média maior ou igual a 6,0.

8. REFERÊNCIAS

8.1 BÁSICAS

- *ALDABÓ, Ricardo. Energia eólica. São Paulo: Editora Artliber, 2002.
- *FADIGAS, Eliane A. F. A. Energia Eólica. 1. ed. São Paulo: Editora Manole, 2012.
- *ESCUDERO LOPEZ, J. M. Manual de Energia Eólica. 2. Ed. Madri, Mundi Prensa, 2008. 477p.
- *PALZ, W. Energia solar e fontes alternativas. 2. ed. São Paulo: Ed. Hemus, 2005. 358 p.

8.2 COMPLEMENTAR

- *BRANCO, S. M. Energia e meio ambiente. 2. ed. São Paulo: Moderna, 2004. 144 p.
- *JHA, A. R. Solar cell technology and applications. 1. ed. Flórida: CRC Press, 2009. 304 pg.
- *MARKVART, T.; CASTANER, L. **Solar cell**: materials, manufacture and operation. 1. ed. Nova Iorque, EUA: Elsevier Science, 2004. 556 p.
- *MCMORDIE, R. K. Solar energy fundamentals. 1. ed. Flórida: CRC Press, 2012. 179 p.
- *NETO, M. R. B.; CARVALHO, P. **Geração de energia elétrica**: fundamentos. 1. ed. São Paulo: Ércia, 2012. 160 p.
- *RIFKIN, J. A. Economia do hidrogênio. 1. ed. São Paulo: Makron Books, 2003. 300 p.

8.3 SUGESTÕES

- *NELSON, Jenny The Physics of Solar Cells, Imperial College Press, 1. Ed., 2010.
- *WÜRFEL, Peter Physics of Solar Cells, Wiley-Vch Ed., 2. Ed., 2010.
- *CHAVES, A. Física básica: gravitação, fluidos, ondas, termodinâmica. Rio de Janeiro: LTC, Ed. LAB, 2007. 242 p.
- *CARVALHO, P. Geração Eólica. 1. ed. Ceará: Imprensa Universitária, 2003. 146 p.

Rodrigo Dal Bosco Fontana – Professor 1979504

FERNANDO GRISON Siape 1869102

Coord.do Curso de Engenharia Ambiental

Chapecó-SC Universidade Federal da Fronteira Sul-UFFS

Fernando Grison – Coordenador

04 de agosto de 2016