UFFS

Universidade Federal da Fronteira Sul

Plano de Ensino

1. Dados de Identificação

Curso: Ciência da Computação Componente: Sistemas Digitais

Fase: Primeira

Ano/Semestre: 2011/2 Numero de Créditos: 4

Carga horária - Hora Aula: 72 Carga horária - Hora Relógio: 60 Professor: Adriano Sanick Padilha

2. Objetivo Geral do Curso

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. Ementa

Circuitos Aritméticos. Registradores. Contadores. Memórias. Máquinas de Estado. Organização de microprocessadores: arquitetura – assembly. Noções de Linguagem de Descrição de Hardware.

4. Justificativa

A Ciência da Computação tem como foco o estudo dos algoritmos, suas aplicações e de sua implementação, na forma de software, para execução em dispositivos computacionais. A disciplina de sistemas digitais insere o aluno no contexto de hardwares computacionais, seus elementos básicos e princípios de funcionamentos. Esta disciplina também forma a base para os conteúdos de Organização e Arquitetura de Computadores que tratam da interação do diversos circuitos digitais aplicados na solução de um problema computacional.

5. Objetivo

5.1 Geral

Compreender os conceitos e funcionamento de circuitos digitais utilizados em computação, através da apresentação de técnicas de projeto e simulação e implementação usando linguagens de descrição de hardware e tecnologias de prototipação.

5.2 Específicos

- Entender circuitos aritméticos, registradores e contadores;
- Projetar sistemas digitais utilizando as técnicas de máquinas de estado;
- Compreender a organização dos microprocessadores segundo sua arquitetura;
- Projetar sistemas digitais utilizando linguagens de descrição de hardware.

Universidade Federal da Fronteira Sul

6. Cronograma e Conteúdo Programático

Semana	Conteúdo
1	Apresentação do plano de ensino e contextualização da disciplina no curso e na vida profissional do cientista da computação;
2	Revisão sobre circuitos digitais. Introdução aos circuitos aritméticos.
3	Implementação de um somador paralelo no simulador de circuitos digitais.
4	Somador paralelo completo com registradores.
5	Aritmética decimal com o CI 74xx283 utilizando o simulador de circuitos digitais.
6	Contadores Assíncronos/Síncronos.
7	Registradores.
8	Codificadores e decodificadores.
9	Multiplexadores e demultiplexadores.
10	Avaliação de NP1
11	Projeto de circuitos sequenciais.
12	Projeto de circuitos sequenciais.
13	Linguagem de descrição de hardware.
14	Linguagem de descrição de hardware.
15	Linguagem de descrição de hardware.
16	Linguagem de descrição de hardware.
17	Organização de microprocessadores.
18	Organização de microprocessadores.
19	Programação em Assembly.
20	Programação em Assembly.
21	Avaliação de NP2
22	Recuperação da NP2

UFFS

Universidade Federal da Fronteira Sul

7. Procedimentos Metodológicos (estratégias de ensino, equipamentos, entre outros)

Aulas expositivas com recursos multimídia e quadro/gis, discussões sobre artigos de revistas técnicas (tecnológicas) em sala de aula e utilização de simuladores para a contextualização do conteúdo teórico exposto.

Horário de atendimento aos acadêmicos será nas terças-feiras no período vespertino.

8. Avaliação do Processo Ensino-Aprendizagem

A avaliação será realizada através de provas escritas, trabalhos (Projeto Integrador) e seminários. A composição da na nota final (NF) é a média aritmética das notas parciais (NP): NF=(NP1+NP2)/2. O acadêmico terá a aprovação da disciplina se a sua NF for igual ou superior a 6.

A NP1 é formada pela nota da prova escrita (PE) e pelo somatório das notas dos trabalhos em grupo (TG), NP1=PE*0,6+TG*0,4. Caso o acadêmico não atinja uma NP1 igual 6, será realizada uma avaliação de recuperação (AR) contemplando todo o conteúdo trabalhado e a nota da PE será substituída pela nota da AR na integralização da NP1.

A NP2 é formada pela nota da prova escrita (PE) de todo o conteúdo do semestre e a nota do Projeto Integrador, NP2=PE*0,6+NS*0,4. Caso o acadêmico não atinja uma NP2 igual 6, será realizada uma avaliação de recuperação (AR) contemplando todo o conteúdo do semestre e a nota da PE então será substituída pela nota de AR na integralização da NP2.

9. Referências

9.1 Básicas

TOCCI, Ronald; WIDMER, Neal; MOSS, Gregory. Sistemas Digitais: princípios e aplicações. 10ª edição. Pearson Editora.

TAUB, Herbert. Circuitos Digitais e Microprocessadores. McGraw-Hill.

MELO, Mairton de Oliveira. Eletrônica Digital. Makron Books.

OSBONE, Adam. Microprocessadores - Circuitos Básicos. McGraw-Hill.

TOKHEIN, Roger. Introdução aos Microprocessadores. McGraw-Hill.

ASHENDEN, Peter J. The Students guide to VHDL. Morgan Kaufmann.

9.1 Específicas

TAUB, Herbert e SCHILLING, Donald. Eletrônica Digital. McGraw-Hill.

IDOETA, Ivan V.; CAPUANO, Francisco G.; Elementos de Eletrônica Digital. Livros Érica Editora Ltda.