UFFS

Universidade Federal da Fronteira Sul

Plano de Ensino

1. Dados de Identificação

Curso: Ciência da Computação

Componente: Organização de Computadores

Fase: Quarta Fase Ano/Semestre: 2014/1 Numero de Créditos: 4 Carga horária - Hora Aula: 72 Carga horária - Hora Relógio: 60

Professor: Adriano Sanick Padilha

Horário de Atendimento: Segundas-feiras -14:30h às 17:30h.

2. Objetivo Geral do Curso

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional

3. Ementa

Tendências tecnológicas na fabricação de CPUs e memórias. CPU: instruções e modos de endereçamento. Formatos de instruções e linguagem de montagem. Simulador e montador. Datapath e unidade de controle. Alternativas de implementação (monociclo, multiciclo, pipeline, superescalar). Exceções e interrupções. Conflitos estruturais, de dados e de controle. Hierarquia de memória e associatividade (cache e TLB). Dispositivos de entrada e saída: tipos, características e sua conexão à CPU e à memória. Comunicação com a CPU (polling, interrupção, DMA).

4. Objetivo

4.1 Geral

Conhecer os principais conceitos envolvidos na concepção da arquitetura e organização dos computadores, sabendo caracterizar e entender o funcionamento interno de um computador, dada uma certa arquitetura, reconhecendo o impacto de cada alternativa sobre fatores como desempenho e custo.

4.2 Específicos

- Apresentar os conceitos fundamentais de um computador em termos de seus componentes básicos (processador, sistema de memória e dispositivos de entrada e saída), abstraindo sua implementação física;
- Prover exemplos reais e contemporâneos desses componentes básicos
- Estabelecer a noção de modelo de programação (programmer's view) de um sistema computacional;
- Mostrar o papel da linguagem de montagem como formato intermediário para geração de código .
- Prover uma visão panorâmica da cadeia de ferramentas de programação de sistemas (compilador, montador, ligador, carregador, simulador do conjunto de instruções e depurador).

Universidade Federal da Fronteira Sul

5. Cronograma e Conteúdo Programático

	Conteúdo	Horas Acumuladas
1	Apresentação do Plano de Ensino; Visão geral da disciplina.	4
2	ORGANIZAÇÃO DE UM COMPUTADOR - Componentes básicos de um computador; - O papel da tecnologia de circuitos integrados no projeto de um computador; - Tendências tecnológicas na construção de computadores.	8
3	EVOLUÇÃO E DESEMPENHO DO COMPUTADOR - Arquitetura x86; - Sistemas Embarcados e a ARM; - Medida e métrica de desempenho; - Programas para avaliação de desempenho ("benchmarks"); - Formas de comparação de desempenho.	12
4	O SUBSISTEMA DE MEMÓRIA - Classificação de memórias; - A organização hierárquica de memória e seu gerenciamento; - Memórias cache: • Uso da localidade espacial, projeto de um sistema de memória para suportar cache; • Políticas de mapeamento, atualização e consistência; • Organização em múltiplos níveis; • Caches associativas e tamanho de rótulos, seleção do bloco a ser substituído; • Impacto no desempenho. - Organização da MEM cache do ARM.	18
5	 MEMÓRIA VIRTUAL: - Paginação, segmentação, fragmentação; - Colocação de uma página na memória principal, faltas de página, escrita de uma página; - TLB, integração de memória virtual, TLBs e caches, operação completa da hierarquia de memória, proteção com memória virtuaL; - Memória virtual: manipulação de faltas de página e de faltas na TLB. Uma estrutura comum para hierarquias de memória; 	24
6	O SUBSISTEMA DE ENTRADA E SAÍDA (E/S) - Tipos e características de dispositivos de E/S; - Conexão de dispositivos de E/S com processador e memória; - Interfaceamento de dispositivos de E/S com a memória, o processador e o sistema operacional:	30

Universidade Federal da Fronteira Sul

	• "Polling";	
	Via interrupções;Acesso direto à memória (DMA).	
	- Interface Processador/Periféricos: introdução, impacto do sistema de E/S no desempenho,	
	medidas de desempenho de E/S;	
	- Exemplo de dispositivos de E/S contemporâneos;	
7	SUPORTE AO SISTEMA OPERACIONAL	
	- Visão Geral do SO;	
	- Escalonamento;	34
	- Gerenciamento de Memória;	
	- Gerenciamento de Memória no ARM.	
8	AVALIAÇÃO DE NP1	36
9	ARITMÉTICA DO COMPUTADORES	
	- Unidade Lógica e Aritmética;	40
	- Representação de inteiros e sua aritmética;	40
	- Representação de ponto flutuando e sua aritmética.	
10	CONJUNTO DE INSTRUÇÕES	
	- Características e Funções:	
	Características da instruções de máquina;	
	• Tipo de operandos;	
	• Tipo de operações;	
	Tipo de operações do ARM.	
	- Modos e Formatos de Endereçamento:	48
	• Endereçamento;	
	• Endereçamento do ARM;	
	• Formato de instruções;	
	• Formato de instruções do ARM;	
	• Linguagem de montagem.	
11	O PROCESSADOR: UNIDADES DE PROCESSAMENTO E CONTROLE	
	- Estrutura e comportamento de unidades de processamento (Ups);	
	- Organização de uma UP com instruções mono-ciclo;	
	- Organização de uma UP com instruções multi-ciclo;	<i>5.6</i>
	- Comportamento da unidade de controle (UC) para uma dada UP;	56
	- Suporte ao tratamento de exceções na UP e na UC;	
	- Pipeline de Instruções;	
	- Processador ARM;	

Universidade Federal da Fronteira Sul

PROGRAMAÇÃO DE SISTEMAS	
- Representações de código:	
• Linguagem de alto nível;	
• Linguagem de montagem;	
Linguagem de máquina;	
 Anatomia de arquivos-objeto e arquivos executáveis. 	
- A cadeia de ferramentas para geração e inspeção de código:	64
A estrutura de um compilador;	
O mecanismo interno de um montado;	
• Ligador: mecanismos estático e dinâmico;	
• Funções de um carregador e de um simulador;	
O mecanismo interno de um depurador.	
- Aplicações e casos de uso do ARM:	
SEMINÁRIO:	
, , ,	68
, .	
- EXCEÇOES E INTERRUPÇOES.	
APRESENTAÇÃO DE TRABALHOS DE NP2.	72
	- Representações de código:

6. Procedimentos Metodológicos (estratégias de ensino, equipamentos, entre outros)

Aulas expositivas com recursos multimídia e quadro/gis, discussões sobre artigos de revistas técnicas (tecnológicas) em sala de aula e utilização de simuladores para a contextualização do conteúdo teórico exposto.

Horário de atendimento aos acadêmicos será nas segundas-feiras no período vespertino (14h-17:30h).

7. Avaliação do Processo Ensino-Aprendizagem

A avaliação será realizada através de provas escritas, trabalhos e seminários. A composição da na nota final (NF) é a média aritmética das notas parciais (NP): NF=(NP1*0,5+NP2*0,5). O acadêmico terá a aprovação da disciplina se a sua NF for igual ou superior a 6.

A NP1 é formada pela nota da prova escrita (PE) e pelo somatório das notas dos trabalhos (TG), NP1=PE*0,6+TG*0,4. Caso o acadêmico não atinja a NP1 igual 6, será realizada uma avaliação de recuperação (AR) contemplando todo o conteúdo trabalhado e a nota da PE será substituída pela nota da AR na integralização da NP1.

A NP2 é formada pela nota da prova escrita (PE) de todo o conteúdo do semestre e a nota do trabalho final do semestre, NP2=PE*0,4+TF*0,6. Caso o acadêmico não atinja a NP2 igual 6, será realizada uma avaliação de recuperação (AR) contemplando todo o conteúdo do semestre e a nota da PE então será substituída pela nota de AR na integralização da NP2.

8. Processo de Recuperação da Nota de Avaliação

Na aula subsequente a avaliação de conhecimento, a mesma será corrigida em aula, esclarecendo as dúvidas pertinentes as questões. Nesta aula será definida a data da avaliação de recuperação. A avaliação de recuperação substituirá a nota da avaliação de conhecimento PE na integralização da NP1, como explicado no item 7.

UFFS

Universidade Federal da Fronteira Sul

9. Referências

9.1 Básicas

PATTERSON, David A.; HENNESSY, John L.. Organização e Projeto de Computadores. Rio de Janeiro, RJ, Elsevier, 2005.

STALLINGS, William. Arquitetura e Organização de Computadores: projeto para o desempenho. 5a ed., São Paulo, SP, Prentice Hall, 2005.

TANENBAUM, Andrew S.. Organização Estruturada de Computadores. 5a ed., Rio de Janeiro, Prentice-Hall do Brasil, 2006.

9.1 Específicas

MURDOCCA, Miles J.. Introdução à Arquitetura de Computadores. Rio de Janeiro, Campus, 2001.

HENNESSY, John L.. Arquitetura de Computadores: uma abordagem quantitativa. Rio de Janeiro, Campus, 2003.

MANO, M.. Computer System Architecture. Englewood Cliffs, NJ, Prentice-Hall International, 1993.

HEURING, Vincent P.. Computer Systems Design and Architecture. 2a ed., Upper Saddle River, NJ, Pearson Prentice Hall, 2004.

HARRIS, David Money. Digital Design and Computer Architecture. Amsterdam, Elsevier, 2007.