

1. IDENTIFICAÇÃO

1.1 Curso: Ciência da Computação

1.2 Componente curricular/turma: Geometria analítica/13277

1.3 Fase: 2

1.4 Ano/Semestre: 2016/1 1.5 Número de créditos: 4

1.6 Carga horária – hora aula: 72 1.7 Carga horária – hora relógio: 60

1.8 Professor: Marina Geremia

1.9 Atendimento ao aluno: Segunda-feira das 8 às 10 horas.

2. OBJETIVO GERAL DO CURSO

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. EMENTA

Matrizes. Determinantes. Sistemas lineares. Vetores. Operações com vetores. Geometria analítica plana: retas e planos; círculos; mudanças de coordenadas. Elementos da Geometria Analítica no espaço: retas e planos; curvas.

4. OBJETIVOS

4.1 Geral

Propiciar ao aluno condições de identificar tipos de matrizes; operar com matrizes; calcular determinantes; construir e resolver sistemas de equações lineares por escalonamento e por inversão de matriz; operar e utilizar vetores como um

My

instrumento para resolver problemas envolvendo relações entre pontos, retas e planos, identificar geometricamente equações lineares e quadráticas em até 3 variáveis.

4.2 Específicos

- Desenvolver o conceito de limite inicialmente de maneira informal; discutir métodos para calcular limites e apresentar a definição matemática formal de limite;
- Compreender, aplicar o conceito de continuidade e dominar suas principais propriedades;
- Compreender, aplicar o conceito de derivada de uma função real e dominar suas principais propriedades;
- Construir modelos para resolver problemas envolvendo funções de uma variável real e suas derivadas;
- Compreender, aplicar o conceito de Integral definida e indefinida de uma função real e dominar suas principais propriedades;
- Promover um entendimento claro dos conceitos do Cálculo que são fundamentais na resolução de problemas enfatizando a utilidade do cálculo por meio do estudo de regras de derivação, taxas relacionadas e traçados de curvas com aplicações do cotidiano.

5. CRONOGRAMA E CONTEÚDO

Data	Conteúdo
04/03 (4 horas)	Matrizes
11/03 (4 horas)	Determinantes.
18/03 (4 horas)	Sistemas lineares.
24/03 (4 horas)	Segmentos orientados; Definição de vetor; Operações com vetores
01/04 (4 horas)	Dependência linear; Bases e coordenadas de um vetor em relação a uma base; Norma de vetor; Produto interno; Ângulo entre
20104 (47	vetores
08/04 (4 horas)	Orientação no espaço; Produto vetorial; Produto misto; Equações da reta; Ângulo entre retas; Equações do plano; Ângulo entre dois planos
15/04 (4 horas)	Distância de ponto a reta; Distância de ponto a plano; Distância entre duas retas reversas; Distância entre dois planos
29/04 (4 horas)	Avaliação individual e sem consulta (P1). Entrega do trabalho (T1).
06/05 (4 horas)	Cônicas Não Degeneradas: Elipse; Hipérbole; Parábola;

	Caracterização das Cônicas.
13/05 (4 horas):	Cônicas Não Degeneradas: Elipse; Hipérbole; Parábola;
	Caracterização das Cônicas.
03/06 (4 horas)	Coordenadas Polares e Equações Paramétricas: Cônicas em
	Coordenadas Polares; Circunferência em Coordenadas Polares;
10/06 (4 horas)	Coordenadas Polares e Equações Paramétricas: Cônicas em
3.50	Coordenadas Polares; Circunferência em Coordenadas Polares;
17/06 (4 horas)	Equações Paramétricas.
24/06 (4 horas)	Rotação e Translação de Eixos.
01/07 (4 horas)	Rotação e Translação de Eixos.
04/07 (4 horas)	Resolução de exercícios e revisão.
05/07 (4 horas)	Avaliação individual e sem consulta (P2). Entrega do trabalho
	(T2).
08/07 (4 horas)	Avaliação, individual e sem consulta, para os alunos que não
	atingirem média 6,0.

6. PROCEDIMENTOS METODOLÓGICOS

A disciplina será conduzida com aulas expositivas/dialogadas discutindo os itens de cunho teórico, e trabalhando exemplos e modelos no quadro. Eventualmente, serão utilizados softwares específicos e em alguns momentos os alunos deverão desenvolver, como forma de avaliação processual, listas de exercícios em sala de aula.

Os alunos terão condições de sanar problemas como dúvidas relativas ao conteúdo e exercícios na monitoria ou procurando o professor, que disponibilizará um horário de atendimento extraclasse de duas horas no período da manhã: **segunda-feira das 8 às 10 horas.**

7. AVALIAÇÃO

O sistema de avaliação seguirá as normas gerais estabelecidas pela UFFS. Serão realizadas duas avaliações sob a forma de duas provas escritas (notas P1 e P2) e de dois trabalhos na forma de listas de atividades (notas T1 e T2).

As notas parciais NP1 e NP2 serão calculadas fazendo a média aritmética entre provas e trabalhos, da seguinte maneira:

P1: nota da primeira avaliação escrita;

P2: nota da segunda avaliação escrita;

T1: nota do primeiro trabalho;

T2: nota do segundo trabalho.

Me

NP1: primeira nota parcial:

 $NP1 = 0.1 \cdot T1 + 0.9 \cdot P1$,

NP2: segunda nota parcial:

 $NP2 = 0.1 \cdot T2 + 0.9 \cdot P2$,

A nota final (NF) será calculada fazendo a média entre as notas parciais:

NF = (NP1 + NP2)/2.

Se NF \geq 6,0, e a frequência for, no mínimo, igual a 75 %, o aluno será considerado aprovado na disciplina.

8. RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Caso algum aluno obtiver nas notas parciais (NP1 ou NP2) escores inferiores à 6,0 será oportunizado para este aluno uma reavaliação, caberá ao aluno optar por realizar a prova de recuperação da prova P1 ou P2. Objetivando a recuperação dos conteúdos, o aluno será orientado com relação aos estudos sobre os conteúdos relativos a cada nota parcial.

9. REFERÊNCIAS BÁSICAS

- DAVID, C. **Geometria analítica**. 2. ed. Rio de Janeiro: Livros Tecnicos e Científicos, 1977.
- STEINBRUCH, A. Matrizes, determinantes e sistemas de equações lineares.
 Sao Paulo: Makron Books, 1989.

Mu

• STEINBRUCH, A.; WINTERLE, P. **Geometria analítica**. 2. ed. Sao Paulo: Makron Books, 1987.

10. REFERÊNCIAS COMPLEMENTARES

- LIPSCHULTZ, S. **Álgebra linear**: teoria e problemas. 3. ed. Sao Paulo: Makron Books, 1994. (Colecao Schaum).
- STEINBRUCH, A.; WINTERLE, P. Álgebra linear. 2. ed. Sao Paulo: Makron Books, 1987.
- BOLDRINI, Jose Luiz et al. **Álgebra linear**. 3. ed. Sao Paulo: Harper How do Brasil, 1980.

MARCO AURÉLIO SPOHN

Siape n°.1521671
Coord. do Curso de Ciência da Computação
Universidade Federal da Fronteira Sul-UFFS
Campus Chapecó-SC