

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental Componente curricular: Física III

Fase: 4a

Ano/semestre: 2014/2 Número de créditos: 4

Carga horária – Hora aula: 72 Carga horária – Hora relógio: 60 h Professor: Marcelo Dallagnol Alloy

Atendimento ao Aluno: A qualquer horário, desde que marcado com antecedência de 48h através do e-mail

alloy.marcelo@gmail.com.

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Carga Elétrica. Lei de Coulomb. Campos Elétricos. Lei de Gauss. Potencial Elétrico. Capacitância e Dielétricos. Corrente e Resistência Elétrica. Leis de Kirchhoff. Energia e Potência em Circuitos Elétricos. Campos magnéticos. Lei de Biot e Savart. Efeito Hall. Indução eletromagnética. Lei de Faraday e Lei de Lenz. Motor e Gerador Elétrico de Indução. Indutância. Transformador Ideal.

4. OBJETIVOS

4.1. GERAL

Carga Elétrica. Lei de Coulomb. Campos Elétricos. Lei de Gauss. Potencial Elétrico. Capacitância e Di elétricos. Corrente e Resistência Elétrica. Leis de Kirchhoff. Energia e Potência em Circuitos Elétricos. Campos magnéticos. Lei de Biot e Savart. Efeito Hall. Indução eletromagnética. Lei de Faraday e Lei de Lenz. Motor e Gerador Elétrico de Indução. Indutância. Transformador Ideal.

4.2. ESPECÍFICOS

Ao final da disciplina, é desejável que o estudante seja capaz de entender o conceito de carga elétrica, força elétrica e campos elétricos. Compreender a Lei de Gauss e saber aplicá-la. Entender o conceito de potencial elétrico. Compreender o funcionamento dos dispositivos básicos do eletromagnetismo como capacitores, dielétricos, resistência e indutores. Saber aplicar as Leis Kirchhoff. Entender como se dá a distribuição de energia e potência em circuitos elétricos.

Compreender o conceito de força magnética e campos magnéticos. Entender e saber aplicar a Lei de Ampère. Compreender o conceito de indução magnética. Compreender o funcionamento básico de um motor e gerador elétrico de indutância. Entender o funcionamento de transformadores elétricos.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

DATA ENCONTRO	CONTEÚDO	
11/08	Carga elétrica; condutores e isolantes; lei de Coulomb.	
13/08	Campo elétrico; força elétrica. linhas de força de um campo elétrico; O cam elétrico criado por uma carga puntiforme.	
18/08	Campo elétrico de uma linha de carga e um disco carregado.	
20/08	O campo elétrico criado por um dipolo elétrico.	
27/08	Fluxo do campo elétrico; lei de Gauss;	
01/09	Aplicações da lei de Gauss.	
03/09	Potencial elétrico; Energia potencial elétrica; superfícies equipotenciais.	
08/09	Gradiente de potencial; cálculo de potencial elétrico a partir do campo elétrico.	
10/09	Primeira Avaliação.	
15/09	Potencial criado por uma carga puntiforme e um grupo de cargas puntiformes.	
17/09	Potencial criado por um dipolo elétrico e uma distribuição contínua de carga; cálculo do campo elétrico a partir do potencial elétrico.	
22/09	Capacitância; capacitores em paralelo e em série;	
24/09	Energia num campo elétrico.	
29/09	Capacitor com um dielétrico; lei de Gaus em dielétricos.	
01/10	Corrente elétrica; resistividades; resistência.	
06/10	Força eletromotriz em circuitos; energia e potência em circuitos elétricos.	
08/10	Resistores em série e paralelo; leis de Kirchhoff.	
20/10	Circuitos RC; diferenças de potencial; instrumentos de medidas elétricas.	
22/10	Segunda avaliação.	
29/10	Campo magnético; linhas de campo magnético e fluxo magnético; partículas carregadas num campo magnético.	
03/11	Força sobre um condutor transportando uma corrente elétrica; força e torque sobre uma espira de corrente.	
05/11	Corrente e campo magnético.	
10/11	Cálculo do campo magnético; condutores paralelos.	
12/11	Lei de Ampère. Aplicações da lei de Ampère.	
17/11	Solenóides e toróides.	
19/11	Uma bobina de corrente e suas propriedades de dipolo magnético.	
24/11	Terceira avaliação	
26/11	Lei de Faraday; lei de Lenz.	

01/12	Força eletromotriz produzida pelo movimento.
02/12	Campos elétricos induzidos; indutância; indutância mútua.
03/12	Indutores e auto-indutância; energia do campo magnético; gerador elétrico de indução.
08/12	Corrente alternada; Resistência e reatância;
10/12	Circuito RLC em série.
15/12	Transformadores.
17/12	Quarta Avaliação.
22/12	Reavaliação.

6. PROCEDIMENTOS METODOLÓGICOS

O procedimento metodológico adotado é o de aulas expositivas com uso de recursos computacionais. Para melhor fixação do conteúdo, o aluno será incentivado a resolver problemas em sala. Vídeos e simulações computacionais em Java também serão usados como recursos pedagógicos. Pequenas demonstrações com materiais e equipamentos apropriados serão realizadas.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação será por meio de aplicação de provas escritas e elaboração de trabalhos escritos. A média final (MF) será dada pela composição das notas parciais NP1 e NP2. Cada nota parcial será composta de duas provas e um trabalho. Podemos expressar NP1 e NP2 da seguinte forma:

> NP1=0.85(A1+A2)/2.0+0.15T1, NP2=0.85(A3+A4)/2.0+0.15T2,

onde A1, A2, A3 e A4 são provas escritas e T1 e T2 são trabalhos. Para o cálculo da média final, basta fazer a média aritmética simples entre a NP1 e a NP2:

MF=(NP1+NP2)/2.

Será considerado aprovado o aluno que obtiver no mínimo média final igual a 6 (seis) e uma frequência mínima de 75% das aulas ministradas.

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Para os estudantes que ficaram com MF inferior a 6,0, haverá duas reavaliações:

- 1. Reavaliação com o conteúdo das duas primeiras provas, A1 e A2, que chamaremos de RNP1;
- 2. Reavaliação com o conteúdo das duas últimas provas, A3 e A4, que chamaremos de RNP2.

Caso RNP1 seja maior que NP1, RNP1 será usada para calcular a MF. Caso contrário, a NP1 permanecerá para o cálculo da MF. Caso RNP2 seja maior que NP2, RNP2 será usada para calcular a MF. Caso contrário, a NP2 permanecerá para o cálculo da MF. Caso o aluno decida realizar a reavaliação, as notas dos trabalhos serão levadas em consideração.

8. REFERÊNCIAS

8.1 BÁSICAS

- **1.**FREEDMAN, R. A.; YOUNG, H. D. FÍSICA III: Eletromagnetismo. 12. ed. São Paulo: Addison Wes ley, 2008. 3 v.
- **2.**SERWAY, R. A.; JEWETT JR., J. W. Princípios de Física: Eletromagnetismo. São Paulo: Cengage Learning, 2005. 3 v.
- **3.**TIPLER, P. A.; MOSCA, G. Física para Cientistas e Engenheiros. 6. ed. Rio de Janeiro: LTC, 2009. 2 v.
- **4.**WALKER, J.; HALLIDAY, D.; RESNICK, R. Fundamentos de Física: Eletromagnetismo. 9. ed. Rio de Janeiro: LTC, 2011. 3 v.

8.2 COMPLEMENTAR

- **1.** FEYNMAN, R. P.; LEIGHTON, R. B.; SANDS, M. Lições de Física de Feynman. Porto Alegre: Bookman, 2008. 2 v.
- **2.**NUSSENZVEIG, H. M. Curso de física básica 3: Eletromagnetismo. 4. ed. São Paulo: Edgard Blucher, 2002. 3 v.

8.3 SUGESTÕES

Bauer, W.; Westfall, G. D.; Dias, H. *Física Para Universitários: Eletricidade e Magnetismo*. São Paulo: AMGH Editora Ltda, 2012.

Professor	
Coordenador	