

# PLANO DE ENSINO DA DISCIPLINA DE ORGANIZAÇAO DE COMPUTADORES

## 1. IDENTIFICAÇÃO

Curso: Ciência da Computação

Período: Matutino Fase: 3a (terceira)

Componente Curricular: Organização de Computadores

Número de Créditos: 04 (quatro)

Carga horária: 60 horas (72 horas-aula)

Professor: Luciano Lores Caimi

Horário de atendimento: Quarta-feira das 10:30 às 11:50

Quinta-feira das 13:30 às 15:30

#### 2. OBJETIVO GERAL DO CURSO

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

## 3. EMENTA

Tendências tecnológicas na fabricação de CPUs e memórias. CPU: instruções e modos de endereçamento. Formatos de instruções e linguagem de montagem. Simulador e montador. Aritmética. Avaliação de desempenho. Datapath e unidade de controle. Alternativas de implementação (monociclo, multiciclo, pipeline, superescalar). Exceções e interrupções. Hazards estruturais, de dados e de controle. Hierarquia de memória e associatividade (cache e TLB). Dispositivos de entrada e saída: tipos, características e sua conexão à CPU e à memória. Comunicação com a CPU (polling, interrupção, DMA).

#### 4. JUSTIFICATIVA

Os conceitos teóricos apresentados neste componente curricular são fundamentais para o entendimento dos sistemas computacionais, especialmente o funcionamento do processador, do subsistema de memória e do subsistema de Entrada e Saída.

#### 5. OBJETIVOS:

#### **5.1. GERAL**

Conhecer os principais conceitos envolvidos na concepção da arquitetura e organização dos computadores, sabendo caracterizar e entender o funcionamento interno de um computador, dada uma certa arquitetura, reconhecendo o impacto de cada alternativa sobre fatores como desempenho e custo.

## 5.2. ESPECIFICOS:

• Entender o funcionamento do ciclo de instrução;



- Conhecer as tendências na evolução de processadores e memórias
- Entender o funcionamento do ciclo de instrução
- Entender os diferentes arquiteturas de conjunto de conjunto de instruções;
- Aprender a programar utilizando um conjunto de instruções específico;
- Aprender o caminho de dados e controle de uma CPU;
- Avaliar e discutir métricas de desempenho;
- Entender a hierarquia de memória;
- Aprender sobre a implementação de mecanismos de E/S.

## 6. CRONOGRAMA E CONTEÚDO PROGRAMÁTICO

| Encontro          | Conteúdo                                                                                      |
|-------------------|-----------------------------------------------------------------------------------------------|
| Aula 01<br>(2 ha) | Introdução à disciplina;<br>Apresentação do plano de ensino;                                  |
| Aula 02<br>(3 ha) | Tendências tecnológicas da fabricação de memórias e processadores;<br>Arquitetura Multinível; |
| Aula 03<br>(3 ha) | Arquitetura Multinível;                                                                       |
| Aula 04           | Arquitetura Multinível;                                                                       |
| (2 ha)            | Arquitetura do conjunto de instruções;                                                        |
| Aula 05           | Arquitetura do conjunto de instruções;                                                        |
| (3 ha)            | Exercícios;                                                                                   |
| Aula 06<br>(2 ha) | Arquitetura do conjunto de instruções;                                                        |
| Aula 07<br>(3 ha) | Conjunto de instruções do processador MIPS;                                                   |
| Aula 08<br>(3 ha) | Conjunto de instruções do processador MIPS;                                                   |
| Aula 09           | Programação Assembly;                                                                         |
| (2 ha)            | Simulador e Montador SPIM;                                                                    |
| Aula 10           | Programação Assembly;                                                                         |
| (3 ha)            | Simulador e Montador SPIM;                                                                    |
| Aula 11           | Datapath e unidade de controle: principios básicos;                                           |
| (2 ha)            |                                                                                               |
| Aula 12<br>(2 ha) | Implementação do processador Monociclo;                                                       |
| Aula 13           | Implementação do processador Monociclo;                                                       |



| (3 ha)            |                                                              |
|-------------------|--------------------------------------------------------------|
| Aula 14<br>(2 ha) | Implementação do processador Multiciclo;                     |
| Aula 15<br>(3 ha) | Implementação do processador Multiciclo;                     |
| Aula 16<br>(3 ha) | 1ª Avaliação                                                 |
| Aula 17<br>(2 ha) | Implementação do processador Pipeline;<br>Hazardz;           |
| Aula 18<br>(3 ha) | Implementação do processador Pipeline;                       |
| Aula 19<br>(2 ha) | Implementação do processador Superescalar;                   |
| Aula 20<br>(2 ha) | Interrupções e exceções;                                     |
| Aula 21<br>(3 ha) | Hierarquia de memória e associatividade;                     |
| Aula 22<br>(2 ha) | Hierarquia de memória e associatividade;                     |
| Aula 23<br>(3 ha) | Hierarquia de memória e associatividade;                     |
| Aula 24<br>(2 ha) | Dispositivos de entrada e saída;                             |
| Aula 25<br>(3 ha) | Métodos de implementação das operações de E/S: polling;      |
| Aula 26<br>(2 ha) | Métodos de implementação das operações de E/S: interrupções; |
| Aula 27<br>(3 ha) | Métodos de implementação das operações de E/S: DMA;          |
| Aula 28<br>(2 ha) | Avaliação de desempenho;                                     |
| Aula 29<br>(3 ha) | 2a Avaliação                                                 |
| Aula 30<br>(2 ha) | Avaliação Substitutiva                                       |

# 7. PROCEDIMENTOS METODOLÓGICOS

Os aspectos mais relevantes relacionados ao conteúdo da disciplina serão expostos e discutidos nas aulas teóricas utilizando projetor multimídia e transparências



preparadas pelo professor, apoiando-se no livro-texto adotado e na bibliografia complementar. Os conceitos apresentados serão ilustrados por meio de exemplos apresentados pelo professor e de exercícios que serão realizados pelos alunos e resolvidos pelo professor em sala de aula. Para a fixação destes conceitos, o professor indicará exercícios extra-classe, a serem resolvidos pelos alunos.

Os conceitos vistos nas aulas teóricas serão exercitados nas aulas de laboratório através da utilização de software de programação assembly e simulação de processadores.

Como instrumento metodológico adicional, será disponibilizada aos alunos uma faixa de horários semanais para atendimento extra-classe. Os horários de atendimento extra-classe serão as quartas-feiras das 10:30h às 11:50h e as quintas-feiras das 13:30h às 15:30h. O estudante que desejar ser atendido fora destes horários deverá solicitar ao professor o agendamento por e-mail com antecedência de 24 horas.

Ao longo do semestre será utilizado o ambiente Moodle como ferramenta de apoio ao ensino presencial. No ambiente serão disponibilizados os materiais digitais a serem entregues aos estudantes tais como slides, textos de apoio, artigos. Será utilizado também o ambiente de chat e o fórum presente no ambiente para auxiliar a comunicação e a eliminação de dúvidas referente aos conteúdos ministrados.

# 8. AVALIAÇÃO DO PROCESSO ENSINO APRENDIZAGEM

Como mecanismos de avaliação serão utilizadas provas teóricas e trabalhos.

Assim, a avaliação será constituída de 3 notas parciais (respectivamente P1, P2 e NP3). A P1 e a P2 constituem-se avaliações escritas (provas teóricas). A NP3 será constituída de 4 trabalhos (T1, T2, T3 e T4), sendo a NP3 obtida pela média aritmética da nota dos trabalhos:

$$NP3 = (T1 + T2 + T3 + T4) / 4$$

Desta forma, a média final (MF) será calculada como a média aritmética entre P1, e P2 e NP3, ou seja:

$$MF=(P1 + P2 + NP3)/3$$

# 9. RECUPERAÇÃO

Será ofertada reposição de conteúdo e avaliação aos estudantes que não obtiveram nota maior ou igual a 6,0 em qualquer uma das provas. A reposição referente a cada uma das avaliações será realizada na semana seguinte a data da avaliação, conforme está previsto no conteúdo programático.

## 10. REFERÊNCIAS

# 10.1 BÁSICAS:

PATTERSON, David A.; HENNESSY, John L.. Organização e Projeto de Computadores. Rio de Janeiro, RJ, Elsevier, 2005.



- STALLINGS, William. Arquitetura e Organização de Computadores: projeto para o desempenho. 5a edição, São Paulo, SP, Prentice Hall, 2005.
- TANENBAUM, Andrew S.. Organização Estruturada de Computadores. 5a edição, Rio de Janeiro, Prentice-Hall do Brasil, 2006.

#### **10.2.COMPLEMENTARES**

- MURDOCCA, Miles J.. Introdução à Arquitetura de Computadores. Rio de Janeiro, Campus, 2001.
- HENNESSY, John L.. Arquitetura de Computadores: uma abordagem quantitativa. Rio de Janeiro, Campus, 2003.
- MANO, M.. Computer System Architecture. Englewood Cliffs, NJ, Prentice-Hall International, 1993.
- HEURING, Vincent P.. Computer Systems Design and Architecture. 2a ed., Upper Saddle River, NJ, Pearson Prentice Hall, 2004.
- HARRIS, David Money. Digital Design and Computer Architecture. Amsterdam, Elsevier, 2007.