

Universidade Federal da Fronteira Sul

Plano de Ensino

1. Dados de Identificação

Turma: 14347 - Ciência da Computação (Turma B) - 1ª Fase - Matutino - 2016/1

Comp. Curricular: GEN001 - Circuitos digitais

Número de Créditos: 4

Carga horária - Hora Aula: 72 Carga horária - Hora Relógio: 60 Jacson Luiz Matte Professor:

Horário de Atendimento: Quinta-feira - 19:00h às 21:00h.

2. Objetivo Geral do Curso

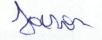
O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. Ementa

Sistemas numéricos. Portas Lógicas. Métodos de Representação de Circuitos. Álgebra de Boole. Circuitos Combinacionais. Circuitos Sequenciais: Latches e Flip-Flops. Famílias lógicas.

4. Objetivo

4.1 Geral


Compreender os conceitos fundamentais da lógica digital e o funcionamento de circuitos digitais básicos.

4.2 Específicos

- Entender os sistemas numéricos computacionais;
- Aplicar técnicas de conversão de bases numéricas;
- Relacionar as técnicas algébricas com o estado da arte dos circuitos digitais;
- Compreender a evolução dos sinais lógicos no diagrama temporal;
- Identificar as funções lógicas de um determinado circuito digital inserido em um sistema computacional.

5. Cronograma e Conteúdo Programático

Encontro	Conteúdo	Hora/Aula Acum.
1	Apresentação do plano de ensino e contextualização da disciplina no curso e na vida profissional do cientista da computação;	3
	Introdução: Sistemas analógicos x Sistemas Digitais .	
2	Sistemas analógicos x Sistemas Digitais .	5
3	Introdução aos Sistemas de Numeração.	8
4	Sistemas de Numeração: Decimal, Octal, Binário e Hexadecimal.	10
5	Códigos Alfanuméricos.	13
6	Álgebra Booleana: Constantes e Variáveis Booleanas; Tabela Verdade; Operações Lógicas e Portas Lógicas.	15
7	Álgebra Booleana: Constantes e Variáveis Booleanas; Tabela Verdade; Operações Lógicas e Portas Lógicas.	18
8	Introdução ao Laboratório de Circuitos Digitais: Fontes DC, Matriz de Contato, Multímetro, Osciloscópio, Gerador de Funções. *Relatório 1 - NP1	20
9	Álgebra Booleana: Descrição de Circuitos Lógicos; Simbologia lógica e padronização; Simulador de circuitos digitais.	23
11	Laboratório de Circuitos Digitais: CIs Lógicos TTL e CMOS. *Relatório 2 - NP1	25
12	Álgebra Booleana: Síntese com Produto de Somas, Síntese com Soma dos Produtos, Formas Canônicas, Simplificação Algébricas.	28
13	Álgebra Booleana: Síntese com Produto de Somas, Síntese com Soma dos Produtos, Formas Canônicas, Simplificação Algébricas.	30
14	Álgebra Booleana: Propriedades das Portas Lógicas, Propriedades da Álgebra de Boole, Teorema DeMorgan, Identidades Auxiliares da Álgebra de Boole.	33
15	Álgebra Booleana: Mapas de Karnaugh.	35
16	Avaliação de conhecimento da NP1.	38
17	Recuperação da avaliação de conhecimento da NP1.	40
18	Laboratório de Circuitos Digitais: Implementação de Circuitos Digitais.	43
19	Laboratório de Circuitos Digitais: Implementação de Circuitos Digitais. *Relatório 3 - NP1	45
20	Famílias lógicas: Integração, Encapsulamento, Tecnologias, Características Elétricas, Circuitos Digitais CMOS.	48
21	Circuitos Combinacionais de Interconexão.	50
22	Circuitos Combinacionais de Interconexão.	53
23	Circuitos Combinacionais Aritméticos.	55

		50
24	Circuitos Combinacionais Aritméticos.	58
25	Laboratório de Circuitos Digitais.	60
26	Laboratório de Circuitos Digitais. *Relatório 4 - NP1	63
27	Circuitos Sequenciais: Elementos Básicos.	65
28	Circuitos Sequenciais: Registradores.	68
29	Avaliação de conhecimento da NP2.	70
30	Recuperação da avaliação de conhecimento da NP2.	72

6. Procedimentos Metodológicos (estratégias de ensino, equipamentos, entre outros)

Aulas expositivas com recursos multimídia e quadro/gis, discussões sobre artigos de revistas técnicas (tecnológicas) em sala de aula e utilização de simuladores para a contextualização do conteúdo teórico exposto. O professor utilizará o ambiente virtual MOODLE como ambiente de ensino-aprendizagem, nele o aluno encontrará artigos, slides das aulas expositivas, lista de exercícios, link dos simuladores de circuitos digitais e vídeo aulas complementares.

Horário de atendimento aos acadêmicos será nas quartas-feira no período noturno (14:00h-16:30h).

7. Avaliação do Processo Ensino-Aprendizagem

A avaliação será realizada através de provas escritas e seminários. A composição da na nota final (NF) é a média aritmética ponderada das notas parciais (NP): NF=(NP1+NP2)/2. O acadêmico terá a aprovação da disciplina se a sua NF for igual ou superior a 6.

A NP1 é formada pela nota da prova escrita (PE) e pelo somatório das notas dos relatório dos trabalhos práticos (TP), NP1=PE*0,6+TP*0,4. Caso o acadêmico não atinja uma NP1 igual 6, será realizada uma avaliação de recuperação (AR) contemplando todo o conteúdo trabalhado e a nota da PE será substituída pela nota da AR na integralização da NP1 (NP1=AR*0,6+TP*0,4).

A NP2 é formada pela nota da prova escrita (PE) e a nota do trabalho final (TF), NP2=PE*0,4+TF*0,6. Caso o acadêmico não atinja uma NP2 igual 6, será realizada uma avaliação de recuperação (AR) contemplando todo o conteúdo do semestre e a nota da PE será substituída pela nota da AR na integralização da NP2 (NP2=AR*0,4+TF*0,6).

7.1 Processo de recuperação da nota de avaliação

Na aula subsequente a avaliação de conhecimento, a mesma será corrigida em aula, esclarecendo dúvidas pertinentes as questões. Nesta aula será definida a data da avaliação de recuperação. A avaliação de recuperação substituirá a nota da avaliação de conhecimento PE na integralização da NP em questão, como explicado no item 7.

8. Referências

8.1 Básicas

TOCCI, Ronald; WIDMER, Neal; MOSS, Gregory. **Sistemas Digitais**: princípios e aplicações. 10^a edição. Pearson Editora.

MELO, Mairton de Oliveira. Eletrônica Digital. Makron Books.

TAUB, Herbert. Circuitos Digitais e Microprocessadores. McGraw-Hill.

IDOETA, Ivan V.; CAPUANO, Francisco G.; Elementos de Eletrônica Digital. Livros Érica Editora Ltda...

Jaron

8.2 Específicas

TAULE, Herbert e SCHILLING, Donald. Eletrônica Digital. McGraw-Hill.

LEACH, Donald P.; Eletrônica Digital no Laboratório. Anais do Seminário Integrado de Software e Hardware, Porto Alegre: SBC.

WAGNER, F. R., REIS, A. I., RIBAS, R. P. Fundamentos De Circuitos Digitais. São Paulo: Bookman Companhia ED, 2008.

uno A. STOH~

Coord. do Curso de Ciência da Computação Universidade Federal da Fronteira Sul-UFFS

Campus Chapecó-SC

Coordenador do curso