

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental Componente curricular: Cálculo II

Fase: 3^a

Ano/semestre: 2015/01 Número da turma: 10220 Número de créditos: 4

Carga horária – Hora aula: 72 Carga horária – Hora relógio: 60 Professor: Edson Ribeiro dos Santos

Atendimento ao Aluno: Todas as terças-feiras das 10:00 as 12:00

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Algumas técnicas de integração e aplicações da integral. Funções de várias variáveis. Limite e continuidade de funções de várias variáveis. Derivadas parciais e aplicações. Gradiente. Diferenciabilidade. Multiplicadores de Lagrange. Integrais múltiplas

4. OBJETIVOS

4.1 GERAL

Introduzir as principais ferramentas do Cálculo Diferencial e Integral de funções de várias variáveis, as quais são imprescindíveis ao desempenho profissional do futuro engenheiro e à estruturação e aprimoramento do seu raciocínio lógico-dedutivo.

4.2 ESPECÍFICOS

Familiarizar o aluno com as principais funções existentes na Matemática;

- Introduzir o aluno ao importante conceito de limite de funções de várias variáveis, possibilitando que o mesmo possa efetuar cálculos acerca de tais limites e que compreenda o significado do que está fazendo;
- Introduzir o conceito de derivada parcial de uma função, possibilitando ao aluno tanto a sua real

compreensão como uma relativa desenvoltura no seu cálculo, através das fórmulas que serão apresentadas e demonstradas;

- Reconhecer funções contínuas e relacionar este conceito ao de limites e derivadas;
- Apresentar alguns resultados envolvendo funções contínuas;
- Propor e resolver aplicações das derivadas parciais em diversos campos do saber humano, além do da própria Matemática;
- Resolver problemas de máximos e mínimos, dando ênfase à utilidade das ferramentas até então vistas;
- Apresentar o importante conceito de integrais múltiplas, abordando especificamente sua definição e seu conceito geométrico primitivo;
- Capacitar o aluno a calcular diversas integrais múltiplas, através das técnicas de integração que serão transmitidas, também com o objetivo de perder o receio das contas que se apresentarem;
- Apresentar aplicações da integração, particularmente no cálculo de volumes de sólidos definidos por funções.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

(apresenta o cronograma e o detalhamento dos conteúdos a serem trabalhados no desenvolvimento do componente, estabelecendo coerência entre ementa e objetivos).

ENCONTRO	CONTEÚDO	
1	Integral definida: Soma de Reimann.	
2	Integral definida: Teorema Fundamental do cálculo. Exemplos.	
3	Métodos de integração: Substituição direta.	
4	Métodos de Integração: Integração por partes.	
5	Cálculo de áreas.	
6	Integrais indefinidas: Família de primitivas. Exemplos.	
7	Métodos de integração: Integrais trigonométricas.	
8	Métodos de integração: Integrais trigonométricas.	
9	Métodos de integração: Substituição trigonométrica.	
10	Métodos de integração: Frações Parciais.	
11	Métodos de integração: Frações Parciais	
12	Avaliação I.	
13	Aplicações de Integral: Comprimento de curvas	
14	Aplicações de integral: Área e volume de sólidos de revolução.	
15	Funções de várias variáveis: Definição e exemplos.	
16	Funções de várias variáveis: Curvas de nível.	
17	Limite de funções de várias variáveis: Definição e exemplos.	
18	Continuidade de funções de várias variáveis.	
19	Derivadas Parciais: Definição e interpretação geométrica.	
20	Derivadas Parciais: Derivadas de ordem superior. Calculo de derivadas. Exemplos.	
21	Aula de exercícios	
22	Avaliação II	
23	Derivadas Parciais: regra da cadeia caso I.	

24	Derivadas Parciais: regra da cadeia caso II.
25	Derivadas Parciais: derivação implícita
26	Derivadas Parciais: derivação implícita.
27	Aplicação de derivadas: Máximos e mínimos. Exemplos
28	Aplicação de derivadas: Máximos e mínimos. Exemplos
29	Avaliação III
30	Definição e interpretação geométrica para o calculo de integrais duplas; cálculo de integrais duplas.
31	Mudança de variáveis para o cálculo de integrais duplas; coordenadas polares
32	Áreas e volumes através de integrais duplas.
33	Mudança de variáveis para o cálculo de integrais triplas; coordenadas cilíndricas
34	Volumes através de integrais triplas.
35	Avaliação IV
36	Recuperação da NF

6. PROCEDIMENTOS METODOLÓGICOS

Aula expositiva na lousa, resolução de exercícios no quadro, avaliações, listas de exercícios e trabalhos frequentes, procurando estimular o estudo constante, dentre outras metodologias que se julgarem necessárias e eficazes à melhor compreensão e evolução possível dos alunos.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

O sistema de avaliação seguirá as normas gerais estabelecidas pela UFFS. Serão realizadas quatro avaliações sob a forma de provas escritas, constituindo-se quatro notas, A1, A2, A3 e A4. Além disso, antes de cada avaliação serão realizados trabalhos e/ou listas de exercícios para serem entregues auxiliando na composição da nota de cada avaliação. Utilizando-se A1, A2, A3 e A4 compor-se-á a nota final (NF). Sendo que a NF será calculada pela média aritmética das três maiores notas. Esquematicamente

A1: nota da primeira avaliação;

A2: nota da segunda avaliação;

A3: nota da terceira avaliação;

A4: nota da quarta avaliação;

NP1: primeira nota parcial:

NP2: segunda nota parcial:

 $NP1 = NP2 = NF = [A1+A2+A3+A4 - min\{A1,A2,A3,A4\}]/3$

Se NF \geq 6,0, e a frequência for, no mínimo, igual a 75 %, o aluno será considerado aprovado na disciplina.

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Caso a NF for inferior a 6,0 o aluno terá direito a uma recuperação substitutiva envolvendo todo o conteúdo das avaliações três e quatro..

8. REFERÊNCIAS

8.1 BÁSICA FLEMMING, D. M.; GONÇALVES, M. B. Cálcul e Paulo: Makron Books, 2007.	• A: funções, limite, derivação e integração. 6. ed. São
Cálculo B: funções de várias variáveis, integed. São Paulo: Makron Books, 2007.	rais múltiplas, integrais curvilíneas e de superfície. 6.
GUIDORIZZI, H. L. Um curso de cálculo. 5. ed. Ri	o de Janeiro: LTC, 2001. v. 2 e 3.
LEITHOLD, L. O cálculo com geometria analíticaO cálculo com geometria analítica. 3. ed. \$	
STEWART, J. Cálculo . 6. ed. São Paulo: Cengage L Cálculo . 6. ed. São Paulo: Cengage Learning	o.
8.2 COMPLEMENTAR ANTON, H.; BIVENS, I.; DAVIS, S. Cálculo. 8. ed Cálculo. 8. ed. São Paulo: Bookman, 2007.	
APOSTOL, T. M. Calculus: one-variable calculus, v. ed. New York: John Wiley & Sons, 1967. v. 1. Calculus: one-variable calculus, with an interpretation of York: John Wiley & Sons, 1967. v. 2.	·
LARSON, R.; HOSTETLER, R. P.; EDWARDS, B Cálculo. 8 ed. São Paulo: McGraw Hill, 20	H. Cálculo. 8 ed. São Paulo: McGraw Hill, 2006. 1 v. 06. 2 v.
SALAS, H. E. Cálculo . 9. ed. Rio de Janeiro: LTC, 2005	
SIMMONS, G. F. Cálculo com geometria analítica Cálculo com geometria analítica. São Pau	
Edson Ribeiro dos santos	Mauro Menegotto