UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental

Componente curricular: Energia Hídrica

Fase: 9a

Ano/semestre: 2014/1 Número de créditos: 4

Carga horária – Hora aula: 72 Carga horária – Hora relógio: 60h

Professor: Diego Santos Greff (<u>diego.greff@uffs.edu.br</u> / diego.s.greff@gmail.com) **Atendimento ao Aluno:** Quarta-Feira 14:00-16:00 com agendamento prévio por e-mail

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Definição de PCHs (Pequenas Centrais Hidrelétricas). Tipos de PCHs. Viabilidade da aplicação das PCHs. Estudos da viabilidade técnica e econômica das instalações das PCHs. Estudos ambientais: legislação pertinente. Levantamentos topográficos, geológicos e hidrológicos do local de instalação das PCHs. Operação e manutenção das PCHs.

4. OBJETIVOS

4.1 GERAL

Fornecer ao estudante conhecimento para avaliação de viabilidade econômica e de impactos ambientais de instalação de PCHs, além de estudos de viabilidade técnica.

4.2 ESPECÍFICOS

- Transferir ao aluno conhecimentos básicos relativos ao processamento da energia hídrica em energia elétrica;
- Fomentar no aluno uma visão multidisciplinar e ambiental do emprego de energia hídrica;
- Capacitar os alunos para o entendimento da operação de uma PCH;
- Capacitar os alunos para o planejamento, execução e coordenação de estudos de impacto ambiental e estudos preliminares de viabilidade econômica de PCHs;

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

Data		Total	
Encontros	Aula	Parcial	Conteúdo
19/03/14	2	2	Apresentação da turma, Plano de Aula, Avaliações, Introdução a disciplina.
20/03/14	2	4	Revisão de circuitos elétricos: resistência, capacitância e indutância
26/03/14	2	6	Revisão de circuitos elétricos: circuitos RC e RL
27/03/14	2	8	Revisão de circuitos elétricos: excitação senoidal e fasores
02/04/14	2	10	Exercícios de circuitos elétricos
03/04/14	2	12	Solução de Exercícios
09/04/14	2	14	Fundamentos de conversão eletromecânica: campo magnético, fluxo e densidade de fluxo magnético
10/04/14	2	16	Fundamentos de conversão eletromecânica: Lei de Faraday, Lei de Ampere, Lei de Lenz, F.E.M
16/04/14	2	18	Avaliação T1
24/04/14	2	20	Gerador de Corrente Continua
30/04/14	2	22	Exercícios sobre gerador de corrente continua
07/05/14	2	24	Geradores Assíncronos: fundamentos construtivos, circuito equivalente, curva torque vs velocidade
08/05/14	2	26	Avaliação T2
14/05/14	2	28	Geradores Síncronos: fundamentos construtivos, circuito equivalente, curva torque vs velocidade
15/05/14	2	30	Geradores Síncronos: operação em paralelo, ligação a rede, sincronismos, exercícios
21/05/14	2	32	Revisão para avaliação P1
22/05/14	2	34	Avaliação P1
28/05/14	2	36	Potencial e aproveitamento hídrico para geração de energia
29/05/14	2	38	Recuperação NP1
04/06/14	2	40	Análise de Viabilidade
05/06/14	4	42	Visita Termoelétrica Jorge Lacerda e Co-Geração Lages
11/06/14	2	46	Estudos de inventários hidroenergéticos
12/06/14	2	48	Estudos de inventários hidroenergéticos
18/06/14	4	50	Visita Técnica PCH
19/06/14	2	54	Operação e Manutenção de PCHs
25/06/14	2	56	Princípios de Projetos básicos de PCHs
26/06/14	4	58	Princípios de Projetos básicos de PCHs
02/07/14	2	62	Metodologia de Valoração das Externalidades Ambientais da Geração Hidrelétrica
03/07/14	2	64	Inventário Hidrelétrico de Bacias Hidrográficas
09/07/14	2	66	Diretrizes para Elaboração de Projeto Básico de Usinas Hidrelétricas pela Eletrobras
10/07/14	2	68	Estudo de Caso de PCHs: Salto Osório et al
16/07/14	2	70	Avaliação P2
17/07/14	2	72	Recuperação NP2

6. PROCEDIMENTOS METODOLÓGICOS

O procedimento metodológico adotado é de aulas expositivas com o auxílio de recursos computacionais, bem como a utilização do quadro branco, questionamentos, discussões, debates, trabalhos individuais e em grupo. No decorrer das aulas serão fomentados os conhecimentos relacionados à obtenção da energia elétrica por meio da fonte hídrica e seus impactos sócio-ambientais, através da resolução de problemas relacionados ao cotidiano e a área da engenharia ambiental. Para melhor fixação do conteúdo e aprimoramento da análise crítica do uso e aplicação das referidas energias, o aluno será incentivado a realizar leituras complementares em livros e artigos científicos relacionados ao assunto. O professor conduzirá as aulas com uma introdução ao assunto e, no desenvolvimento dos temas propriamente ditos, serão realizados questionamentos, exemplos teóricos e práticos de engenharia, bem como a proposição de exercícios e ensaio de projetos, visando motivar o interesse e a atenção dos alunos, e consolidar o aprendizado. O aluno terá à disposição assistência individual do professor para resolver questões e problemas relacionados à disciplina, em horários previamente marcados.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação da disciplina será de forma continuada, oportunizando as reflexões, discussões e questionamentos durante as aulas. A avaliação, além de proporcionar o acompanhamento do processo de aprendizagem e revalidação dos conhecimentos adquiridos pelos alunos, proporcionará ao docente uma reavaliação do processo de ensino e de aprendizagem, permitindo possíveis tomadas de decisão no caso de desvios. Os instrumentos de avaliação a serem utilizados serão provas individuais e escritas, bem como trabalhos individuais e em grupo. O sistema de avaliação seguirá as normas gerais estabelecidas pela UFFS.

A **Média Final (MF)** será constituída pela Média Aritmética entre as notas parciais **NP1** ou **NP1**_{final} e **NP2** ou **NP2**_{final}.

A nota parcial **NP1** será constituída da seguinte forma: **Uma Prova P1** [(**P1**) – peso de 80%] e **dois Testes** [(**T1+T2**) – peso de 20%].

A nota parcial NP2 será constituída da seguinte forma: Uma Prova P2 [(P2) – peso de 80%] e Trabalhos e relatórios individuais ou em grupo 2 [(T3) – peso de 20%].

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Independente das notas parciais **NP1** e/ou **NP2**, será aplicado uma avaliação de recuperação, onde os alunos poderão optar em realizar a recuperação ou não. Caso não optem pela realização da prova de recuperação, sua nota fica inalterada, valendo a nota parcial **NP1** e/ou **NP2** calculada acima. Caso optem pela realização da prova de recuperação, passa a valer a média como segue abaixo:

O aluno que optar em realizar a prova de recuperação **NP1**, fará uma nova avaliação denominada **RecNP1**, a qual será cobrado os conteúdos das avaliações **P1** e **T1**. Assim, a nota **NP1**_{final} passa a ser calculada da seguinte forma:

$$NP1_{final} = (NP1 + RecNP1) / 2.$$

O aluno que optar em realizar a prova de recuperação NP2, fará uma nova avaliação denominada RecNP2, a qual será cobrado os conteúdos das avaliações P2 e T2. Assim, a nota NP2_{final} passa a ser calculada da seguinte forma:

$$NP2_{final} = (NP2 + RecNP2) / 2.$$

A média final (MF) será calculada da seguinte forma:

$$MF = [(NP1 ou NP1_{final}) + (NP2 ou NP2_{final})] / 2$$

Estará aprovado na disciplina o aluno que obtiver nota, com média final igual ou superior a 6,0 (seis) e frequência igual ou superior a 75%.

8. REFERÊNCIAS

8.1 BÁSICA

BORTONI, Edson da Costa; SOUZA, Zulcy de. Instrumentação para sistemas energéticos e industriais. [S.I]: Editora Interciência, 2006.

BRANCO, Samuel Murgel. Energia e meio ambiente. São Paulo: Moderna, 1990.

FAINZILBER, A. **Energia hidrelétrica**. Rio de Janeiro: Bloch; Brasília: Ministério da Educação e Cultura, Ministério das Minas e Energia, 1980.

REIS, L. B.; SILVEIRA, S. Energia elétrica para o desenvolvimento sustentável. São Paulo: EDUSP, 2000.

8.2 COMPLEMENTAR

BARRETO, Eduardo José Fagundes. **Tecnologias de energias renováveis**: sistemas híbridos, pequenos aproveitamentos hidroelétricos, combustão e gaseificação de biomassa sólida, biodiesel e óleo vegetal *in natura*. Brasília: Ministério de Minas e Energia, 2008. Disponível em: http://www.cerpch.unifei.edu.br>.

FELIZOLA, E. R.; MAROCCOLO, J. F.; FONSECA, M. R. Identificação de áreas potenciais para implantação de turbina hidrocinética através da utilização de técnicas de geoprocessamento. In: XIII Simpósio Brasileiro de Sensoriamento Remoto. Anais. Florianópolis: Inpe, 21-26 abril 2007.

BOLDEA, I. Synchronous generators. Boca Raton, FL: CRC/Taylor & Francis, 2006. v. 1

GODOY SIMÕES, M; FARRET, F. A. Alternative energy systems: design and analysis with induction generators. 2nd Ed. Boca Raton, FL: CRC Press, c2008. 433 p.

TIAGO FILHO, Geraldo Lúcio. **Pequenos aproveitamentos hidroelétricos**. Brasília: Ministério de Minas e Energia, 2008. Disponível em: http://www.cerpch.unifei.edu.br>.

8.3 SUGESTÕES

UHE Salto Osório: plano de uso e ocupação das água e entorno do reservatório da Usina Hidrelétrica Salto Osório. TRACTEBEL ENERGIA, 2002.

UHE Salto Santiago: plano de uso e ocupação das águas e entorno do reservatório da usina hidrelétrica Salto Santiago. TRACTEBEL ENERGIA, 2002.

Professor	Coordenador do curso